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J. Phys.: Condens. Matter l(1989) 2731-2736. Printed in the UK 

LETTER TO THE EDITOR 

Exact properties of the mixed mass modulated spring 
constant model 

S W Lovesey 
Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 OQX, UK 

Received 6 February 1989 

Abstract. Properties of the modulated spring constant model, which has been used to explore 
the dynamic features of incommensurate crystal phases, are expressed in analytic form. 
Results for the density of states, average energy and mean square velocity are given. 
Particular attention is given to the effects and properties of a mass defect. 

The lattice vibrations of a compound in an incommensurate structural state are radically 
different from those of a crystal with lattice periodicity. For one thing, there is no 
Brillouin zone and the wavevector is not a good quantum number. A model used to 
explore the intriguing dynamics of an incommensurate system consists of a chain of 
particles with harmonic interactions that vary from site to site. The modulation of 
the spring constant is incommensurate with the chain, so the model does not possess 
translational invariance. It mimics an anisotropic compound in which some atoms, in an 
otherwise periodic crystal, form one-dimensional chains. 

Previous studies of the model, reviewed by Currat and Janssen (1988), have used 
numerical techniques to reveal properties of the energy spectrum, and it has many 
features in common with the Hofstadter butterfly energy spectrum of electrons in a 
tight binding model subject to an external magnetic field. Such studies are, of course, 
restricted to commensurate configurations. If the modulation wavevector Q = 2 n M / N  
the number of band is proportional to the periodicity integer N .  An irrational number 
can be approached for suitably large N (using a Fibonacci series, for example). Since the 
width of the spectrum is independent of N it becomes increasingly fragmented with 
increasing N .  Therefore the precise form of the spectrum is really merely a mathematical 
curiosity given the finite accuracy available in experimental and numerical studies. From 
this standpoint, there is much interest in obtaining analytic expressions for physical 
properties of models with relatively low-order periodicity. 

We have used the analytic technique developed in previous papers (Lovesey 
1988a, b) to obtain physical properties of the periodic modulated spring model, including 
the effect of a defect. Here we report results for the density of states, average energy, 
and the mean square velocity observed in the second-order Doppler shift of a Mossbauer 
peak. 

The quantities of interest are obtained from a displacement Green function, which 
is conveniently defined in terms of normal coordinates. Let these be chosen real, and 
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denoted byfU(n) where a i s  a normal coordinate label and the integer n defines an atomic 
site. The orthonormality and closure relations are 

Cfu(n>fu(n’)  = an,n,/mn 

un = Cifu(n)(ba+ + b u ) / ( 2 ~ u ) ” ~  

U 

where mn is the particle mass, and the lattice displacement 

( 2 )  
U 

in which bo, b: are standard Bose operators and CO, is the eigenfrequency in the 
diagonalised Hamiltonian. With these definitions, the Green function 

satisfies the equation of motion 

(pmn - - a,+i)G(n, n’; p)  = a n , n ,  - anG(n - 1, n’; p)  - an+1G(n + 1 ,  n’; p ) .  
(4) 

( 5 )  

For the modulated spring model 

an = m(a - y C O S ( ~ Q  + A)) .  

Here, y is the strength of the modulation of the force constants attributed to changes in 
the local environment of atoms along the chain. 

If all particles in the chain have mass m except at the site labelled s where there is a 
mass m‘ = m(l  - A )  then (see, for example, Lovesey 1986) 

G(n, n‘; p )  = P(n, n’; p)  + mApP(n, s; p ) P ( s ,  n‘; p ) / ( l  - mApP(s, s; p ) ) .  (6) 

In this expression, which can be deduced from the identity 

P is the Green function for the perfect chain, i.e. the solution of (4) for mn = m for all 
n. An appropriate expression for P is obtained, using the method described previously 
(Lovesey 1988a, b), in terms of polynomials inp,, q, which satisfy the recursion relation 
b n ,  qn R n )  

R n + 2  + R n + l ( p - a n  - a n + l ) + R n a ’ , = O  (7)  
with the initial conditionspo = q1 = 0 , p l  = qo = 1. 

some specific results. The density of states Z(w) ,  normalised to unity for w 2 0, is 
Let us now record expressions for quantities of physical interest, and then present 

z(w) = ( - ~ o / J G N )  2 m, Im ~ ( n ,  n; w 2  + io+) .  (8) 
n 

While the mean square velocity (U’,)  and the average energy can be obtained from this 
expression, it is more convenient to exploit a result obtained from (2)  and ( 3 )  

s 

mn(ui> = T 1 + 2 2  (1 + mnOkG(n, n;  - O k ) ) ) .  (9) 
k = l  

Here, Tis  the temperature (6 = kB = 1) and Ok = ( 2 n l ~ T ) ~ .  The defect energy, defined 
as the change in the average energy per particle 
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N -  1 

2 mn(vf>/N 
n=O 

due to the defect, is readily shown to be 

The technique for calculating P outlined here and developed in detail in previous papers 
applies to modulation wavevectors Q = 2nM/Nwith arbitrary integers M ,  N .  We report 
results for N = 3. This simple case illustrates the main features of the modulated spring 
constant model with a mass defect. Some features are admittedly exaggerated by the 
small periodicity number and might not be quite so significant in applications to realistic 
situations modelled by larger N .  A more extensive investigation of the N-dependence 
of the modulated spring model will be prepared. 

To evaluate the expressions provided for the physical quantities we require explicit 
expressions for P(s,  s; p)  = P(s; p). The two identities 

N-1 

m E P(s; = (Ph+1 + qh)/[(PN+l + 4 N I 2  - (2% . . . aN-1)211/2 (11) 
s = o  

and 

are also useful; the prime denotes differentiation with respect to p. We find for N = 3 

J ( p )  = p(-p2 + 6ap - 9a2 + $7’) 
p4 + q 3  7 2aOala2 = (13) 

[J(P) + c 
where C = 4 2  - 3a3 - cos 3A and 

W s ;  = [ J ’ ( P )  - ~ P Y  cos(A + (s - ~>Q)I/{~[J(P>(J(P> + C)I1’*). (14) 

Combining the various expressions, we find that the density of states of the pure system 
is 

Z ( O )  = (20/3n)/J’l[-J(J + C)]-’’2 (15) 
for J ( J  + C) < 0 and zero otherwise; the prime denotes differentiation with respect to 
p = co2. Solutions of J ( J  + C) = 0 for which p 2 0 give the band edges. The periodic 
rootsaresolutionsofJ = 0,namelyp = 0,3(2a ? Iy1)/2fromwhichweseethat2a > / y I .  
An additional constraint on the magnitude of y is obtained from the antiperiodic roots 
J + C = 0, and this reduces to the condition C 2 0, i.e. the range of allowed values of y 
depends on the phase A and reflects the requirement that {an} are positive for a stable 
system. 

The average energy in the pure system shows some variation as a function of the 
phase A, although this is not significant at high tempertures where the energy approaches 
T. The minimum energy occurs at A = 0, 2n/3 for 0 < y < a and at n/3, n for 
-a < y < 0, and the variation is less than 5% at a temperature = 0.02 in units of all2. 
For allowed states with IyJ > a the minimum energy occurs for y = y(A) which is a 
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solution of the cubic equation C = 0. Figure 1 shows the mean square velocity of a 
particle in the pure system as a function of temperature for A = 2n/3 and y = 0 . 9 5 ~ .  
For this choice of A there are just two distinct sites, and the difference in (U:) for these 
sites is minimal beyond about T = 1 at which the values are essentially classical. 

In contrast to this, classical values of (U:) for a light mass defect are achieved at much 
higher temperatures as illustrated in figure 1. There is a slight variation of (U,”) for d = 
0.9 with temperature up to T = 1, while a heavy mass A = -5.0 has a comparatively 
much smaller velocity and a temperature variation akin to that obtained in a pure system. 
The A-variation of ( U : )  for T = 0.02 is shown in figure 2. As might be expected, the 
phase dependence is quite pronounced for the light mass defect. 

A heavy mass defect decreases the normal mode frequencies from their values in the 
corresponding pure case, whereas a light mass defect increases the frequencies and 
generates localised modes outside the band intervals of the pure density of states. In 
consequence, the defect energy, as defined here, is negative for A < 0 and positive for 
0 < d < 1. The A-dependence of E ( S )  for A = 0.9 is shown in figure 2 for s = 0 and it 
possesses a strong minimum at 2n/3; values of E ( S )  for s = 1, 2 are shifted relative to 
thosefors = Osuch that the minima occur at A = n/2, n/3 respectively. The temperature 
dependence of the average energy of a pure system and E ( $ )  for A = 0.9, -5.0 is shown 
in figure 3. A heavy defect reduces the energy of the system, but the reduction is 
essentially independent of m’ for m‘ > 6m. 

The strong A-dependence of quantities shown in figures 1-3 is evident in the cor- 
responding high-temperature approximations. We find that the mean square velocity of 
a mass defect approaches 

( U : >  = (T/”)U + (a ,  + a,+1)/[12mT2(1 - d)Il 

and the corresponding defect energy is 
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Figure 2. Defect energy and mean square velocity are shown as functions of A at a reduced 
temperature = 0.02, y = 0.95. The defect energy is for A = 0.9, and “(U:) is given fors = 
0 and A = 0.9 (upper curve) and A = -5.0. 

s=1,2 -____-- -- ------- _---- Figures. The average energy per particle is shown 
as a function of reduced temperature in the range 
0.02 to 1.0 for A = 2n/3 and y = 0.95. Defect 

-- 
;------- S=O 

A=-5.0 
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E ( $ )  = A(EJ + a,+,)/[12mTN(l - A)]. 
These results are derived from (9) and (10) using the large-p form of P(s; ,U) which is 
readily obtained from (3). 

I am very grateful to Sir Rudolf Peierls for a discussion and correspondence on the work 
reported. 
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